(1/3)(x+27)=4

Simple and best practice solution for (1/3)(x+27)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3)(x+27)=4 equation:



(1/3)(x+27)=4
We move all terms to the left:
(1/3)(x+27)-(4)=0
Domain of the equation: 3)(x+27)!=0
x∈R
We add all the numbers together, and all the variables
(+1/3)(x+27)-4=0
We multiply parentheses ..
(+x^2+1/3*27)-4=0
We multiply all the terms by the denominator
(+x^2+1-4*3*27)=0
We get rid of parentheses
x^2+1-4*3*27=0
We add all the numbers together, and all the variables
x^2-323=0
a = 1; b = 0; c = -323;
Δ = b2-4ac
Δ = 02-4·1·(-323)
Δ = 1292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1292}=\sqrt{4*323}=\sqrt{4}*\sqrt{323}=2\sqrt{323}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{323}}{2*1}=\frac{0-2\sqrt{323}}{2} =-\frac{2\sqrt{323}}{2} =-\sqrt{323} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{323}}{2*1}=\frac{0+2\sqrt{323}}{2} =\frac{2\sqrt{323}}{2} =\sqrt{323} $

See similar equations:

| 4t-2=13 | | 12x+15=52 | | 76=w-4 | | 4p=3p-5 | | 5x+28=10-x | | 20=-8+m | | 120=+8(1+2n | | r+36/7=7 | | S=50f | | p​2​-18p+81=0​ | | s=4;s=38 | | 15+n=42 | | 5=(0.0125)(0.5)(x) | | 4(x+5)=60x=20 | | 9(d-4)—8=5d | | -18=v/17 | | 3x+12=2x+30 | | X/4x4+6=-5 | | 6(c+10)=96 | | 12=(3y-3) | | 90=(x+12)+(4x)+28 | | 100=(2x+4) | | 3p=4p-9 | | -4=2(u-9) | | -y+234=152 | | -196=7x | | 7x+2=6x+18 | | 8(2q+1/2)=84 | | 3(2+4)=10x+12 | | 40=2y+18 | | x-2+6=10 | | 5x+2=2x–1 |

Equations solver categories