(1/3)-(1/6)z=(7/6)

Simple and best practice solution for (1/3)-(1/6)z=(7/6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3)-(1/6)z=(7/6) equation:



(1/3)-(1/6)z=(7/6)
We move all terms to the left:
(1/3)-(1/6)z-((7/6))=0
Domain of the equation: 6)z!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
-(+1/6)z+(+1/3)-((+7/6))=0
We multiply parentheses
-z^2+(+1/3)-((+7/6))=0
We get rid of parentheses
-z^2+1/3-((+7/6))=0
We calculate fractions
-z^2+()/()+()/()=0
We add all the numbers together, and all the variables
-1z^2+2=0
a = -1; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-1)·2
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-1}=\frac{0-2\sqrt{2}}{-2} =-\frac{2\sqrt{2}}{-2} =-\frac{\sqrt{2}}{-1} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-1}=\frac{0+2\sqrt{2}}{-2} =\frac{2\sqrt{2}}{-2} =\frac{\sqrt{2}}{-1} $

See similar equations:

| -5x2+40x+60=0 | | -3(x=2)-3x2x+18 | | -5j=-6-6j | | -11=x/16 | | 5(b-2/5)+4=3/5 | | X+2-2x=x+5-(x-3) | | 6+x+20=90 | | 2w+2w=-4 | | 22-14=4(x-2) | | 3a=-0.21 | | |x-12|=24 | | -2x-8=-5x10 | | 12k-8k-2k=4 | | 5j=-6-6j | | 6x+5=1+2(3x+2)6x+5=1+23x+2 | | 2x+0.75=0.25x | | 3(x+1)-2(x-2)=x+4 | | -7-2v=-v | | 100=x^2= | | -10=7n-2n | | 6h^2-8h=0 | | 4x+x+35=180 | | 9u-8u=17 | | (5x+3)^2=7 | | (x+20)°=(3x-4)° | | 7n+29=3 | | 3=-0.5x-2 | | 10=1+x/2 | | 180-(30+(4x+2))=180-(8+6x) | | 11v+2v-10v+2=17 | | 5(20x+75)=1375 | | 5–3x=11 |

Equations solver categories