(1/3)m+(2/5)m=1100

Simple and best practice solution for (1/3)m+(2/5)m=1100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3)m+(2/5)m=1100 equation:



(1/3)m+(2/5)m=1100
We move all terms to the left:
(1/3)m+(2/5)m-(1100)=0
Domain of the equation: 3)m!=0
m!=0/1
m!=0
m∈R
Domain of the equation: 5)m!=0
m!=0/1
m!=0
m∈R
We add all the numbers together, and all the variables
(+1/3)m+(+2/5)m-1100=0
We multiply parentheses
m^2+2m^2-1100=0
We add all the numbers together, and all the variables
3m^2-1100=0
a = 3; b = 0; c = -1100;
Δ = b2-4ac
Δ = 02-4·3·(-1100)
Δ = 13200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13200}=\sqrt{400*33}=\sqrt{400}*\sqrt{33}=20\sqrt{33}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{33}}{2*3}=\frac{0-20\sqrt{33}}{6} =-\frac{20\sqrt{33}}{6} =-\frac{10\sqrt{33}}{3} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{33}}{2*3}=\frac{0+20\sqrt{33}}{6} =\frac{20\sqrt{33}}{6} =\frac{10\sqrt{33}}{3} $

See similar equations:

| y=1+2/3 | | 5z-8=3z+16 | | 13)−4k+2(5k−6)=−3k−39 | | 4t−2t=8 | | -5(-6w=6(w-4)-4 | | 0=5/9(x-32) | | 3x+5=6x-61 | | -4+3v=1+8v-8v+13 | | d-17=22 | | x+57=63 | | 4(y+4)=8y+8 | | 87=5n | | 3-5n-8n=-8n+13 | | 6x+6=12+3x | | √3^n=6561 | | 7/6m=16 | | 2+1.25f=10−2.75 | | x+195=-316 | | (110)=x/5 | | -12x+20=0 | | 4=2/3k | | -4+4x=2+x-2+5 | | 4/x+2+5=29/x+2 | | -6y+8=4(y+7) | | 7y+5+5y+6=14y-5 | | 42x+63=63 | | 20=31+m | | -3(x-2)=-6x+30 | | -7x+5=8x-26 | | -4(-5x+2)+2x=-52 | | 110+0.40x=30+0.50x | | 0.6666666x+0.3333333=0.3333333x+0.6666666 |

Equations solver categories