(1/3)n+7=12

Simple and best practice solution for (1/3)n+7=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3)n+7=12 equation:



(1/3)n+7=12
We move all terms to the left:
(1/3)n+7-(12)=0
Domain of the equation: 3)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+1/3)n+7-12=0
We add all the numbers together, and all the variables
(+1/3)n-5=0
We multiply parentheses
n^2-5=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $

See similar equations:

| 4x+12=-2x+36 | | 3x5=13 | | n/5-20=-10 | | -10x(x-3)=8x | | 3x^2−18x−21=0 | | 6x^2-17+10=0 | | –6(x+15)+5x=98 | | 50=3y+8 | | (7x+3)-(4x+2)=10 | | 4-(5x+3)+6x=12 | | 15000=2^n | | 3(h-4)+2h-5+2(h-1)=9 | | x+30=124 | | (x+14)/14=x/7 | | z+4(2z+3)=25-10 | | 4(1/2x-4)=2(2x=1/2) | | 0.06x^2-0.5x+1=0 | | -3p+-17p=20 | | (5x^2-11x-102=0 | | -3x+2/3=8 | | 5p-4p-p+3p=15 | | 11x-6=2x+9 | | 7t+2t-5t=16 | | 3/4x9=-11 | | 6(x+9)-9=27 | | −3(n+2)=n−22 | | 4c-c-3c+c=20 | | 2(x-1)+3x=1+2 | | d+4d+d-4d-d=11 | | 8x+9=4x-15 | | 13x+9=-8 | | 9x-13=-8 |

Equations solver categories