If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/3)x+(2/3)x=262
We move all terms to the left:
(1/3)x+(2/3)x-(262)=0
Domain of the equation: 3)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+1/3)x+(+2/3)x-262=0
We multiply parentheses
x^2+2x^2-262=0
We add all the numbers together, and all the variables
3x^2-262=0
a = 3; b = 0; c = -262;
Δ = b2-4ac
Δ = 02-4·3·(-262)
Δ = 3144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3144}=\sqrt{4*786}=\sqrt{4}*\sqrt{786}=2\sqrt{786}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{786}}{2*3}=\frac{0-2\sqrt{786}}{6} =-\frac{2\sqrt{786}}{6} =-\frac{\sqrt{786}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{786}}{2*3}=\frac{0+2\sqrt{786}}{6} =\frac{2\sqrt{786}}{6} =\frac{\sqrt{786}}{3} $
| 3(x-3)+7=4x+2-3(2-x) | | 3x+3x+3x+3x+3x+3x+3x+3x+3+x+3x+3x=1/3x+3+x+3x | | 11=-10-6x/5 | | 0,25x+1,2=4,7 | | 2x-4x=7x+10 | | 16(z+3)=4(z+8) | | 16(z+3)=5(z+8) | | 13=8z+1 | | 4(2x-1=28 | | 6-11m=-10 | | 6w+13=9 | | 15-8z=39 | | -118=3-11x | | y+5y+9y+5y=0 | | 2/7(-11/3p+15)=0 | | 5(z-4)=z=4z-20 | | 16(z+3)=4(z+4) | | 8x-5=x+8 | | 9x=x^2+8+16 | | -3b-30=-6(2b-6) | | 2/5(10m+5)=-18 | | 1/4w+5=9 | | 24x=192 | | 5/2x=5.5 | | 2x²+4x+19=0 | | 0=8x-155 | | 8−5x=48 | | 6(2x–3)=42 | | -2x+22=3x+12 | | 0.3(6-x)=0.4(x+8)-7.1 | | 4/15=x/9 | | x/24=3 |