If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/3)x+(5/6)=1
We move all terms to the left:
(1/3)x+(5/6)-(1)=0
Domain of the equation: 3)x!=0determiningTheFunctionDomain (1/3)x-1+(5/6)=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/3)x-1+(+5/6)=0
We multiply parentheses
x^2-1+(+5/6)=0
We get rid of parentheses
x^2-1+5/6=0
We multiply all the terms by the denominator
x^2*6+5-1*6=0
We add all the numbers together, and all the variables
x^2*6-1=0
Wy multiply elements
6x^2-1=0
a = 6; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·6·(-1)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*6}=\frac{0-2\sqrt{6}}{12} =-\frac{2\sqrt{6}}{12} =-\frac{\sqrt{6}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*6}=\frac{0+2\sqrt{6}}{12} =\frac{2\sqrt{6}}{12} =\frac{\sqrt{6}}{6} $
| 14x(-5)=6x+11 | | 2(x+11)=18 | | 14r+4r-11r-4r=9 | | 10(x+15)-19=121 | | 14x(-5)=6x(11) | | 2/3m-6=24 | | 3^t+5=20 | | 1(x+9)+7=8 | | 4(x+14)-16=72 | | 16n+32=0 | | 400=r2 | | 5(2a+1)=-65 | | 8(x-5)-8=-180 | | 9k-2k-2k=5 | | 121+96+101+162+90+x=720 | | 2+k=11 | | (x)/6+(x)/4=-30 | | 3(x+5)-17=19 | | 19u+u-18u-2u+u=14 | | 9(x+10)+14=50 | | 16g-11g-3g-2g+2g=14 | | -1+8k=7k+4 | | 8(x-4)-8=-72 | | (x)/2+(x)/3=15 | | 13b-11b+2b=20 | | 9x+2=10x-12=3x+10 | | 42000=28000(1+0.08)^t | | 4u-4u+u+5u=6 | | 90=(x+38)+(3x) | | n/7+23=62 | | 2*4^3x-8=120 | | 1(x+4)=11 |