If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/3)x-(2/3)=10
We move all terms to the left:
(1/3)x-(2/3)-(10)=0
Domain of the equation: 3)x!=0determiningTheFunctionDomain (1/3)x-10-(2/3)=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/3)x-10-(+2/3)=0
We multiply parentheses
x^2-10-(+2/3)=0
We get rid of parentheses
x^2-10-2/3=0
We multiply all the terms by the denominator
x^2*3-2-10*3=0
We add all the numbers together, and all the variables
x^2*3-32=0
Wy multiply elements
3x^2-32=0
a = 3; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·3·(-32)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*3}=\frac{0-8\sqrt{6}}{6} =-\frac{8\sqrt{6}}{6} =-\frac{4\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*3}=\frac{0+8\sqrt{6}}{6} =\frac{8\sqrt{6}}{6} =\frac{4\sqrt{6}}{3} $
| 5p-3p+5=19 | | 8x+12+4x-10=62 | | 2y-5/4=15/4-8y. | | 4n=−20 | | 4(1+4n)=100 | | x+105=85 | | 0=-7+x/1 | | 4x+16=32. | | 2(x-5)+2=3(x+2) | | 2.5(x-2)=52+x* | | 6m+6=2+30 | | 12=(x)/(-6) | | 8(b-3)-4=32 | | 15=-3(x+10) | | (2)2x+x=360 | | 2x-2=-4x+4 | | 3+p=19 | | 7(u+3)=-3(6u-3)+7u | | |x+7|-8=-8 | | 18x-5=20x-5 | | 3a−2a=9 | | 8x-24=12-10 | | 0.75n=1.5 | | -7(-2-2z)-10=60 | | 2=5-3a | | 5/2x=11-3x | | 0.5(16−x)=−12(x+7) | | 2(d-6)=8 | | -7x+29=23 | | f(6)=25 | | 560+1/6n=570 | | 4x-(3-x)=6+x-(2x-3) |