If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/3x)+(x-10)+(x-20)+40=360
We move all terms to the left:
(1/3x)+(x-10)+(x-20)+40-(360)=0
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+1/3x)+(x-10)+(x-20)+40-360=0
We add all the numbers together, and all the variables
(+1/3x)+(x-10)+(x-20)-320=0
We get rid of parentheses
1/3x+x+x-10-20-320=0
We multiply all the terms by the denominator
x*3x+x*3x-10*3x-20*3x-320*3x+1=0
Wy multiply elements
3x^2+3x^2-30x-60x-960x+1=0
We add all the numbers together, and all the variables
6x^2-1050x+1=0
a = 6; b = -1050; c = +1;
Δ = b2-4ac
Δ = -10502-4·6·1
Δ = 1102476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1102476}=\sqrt{4*275619}=\sqrt{4}*\sqrt{275619}=2\sqrt{275619}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275619}}{2*6}=\frac{1050-2\sqrt{275619}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275619}}{2*6}=\frac{1050+2\sqrt{275619}}{12} $
| -16x+13=20x-23 | | -8(-3p-5)+6(p+4)=34 | | -16x+13+20x-23=180 | | 6/7k=-41 | | C^2-20c-276=0 | | 9x-(3x-9)=1+5x | | 5(2x-4)+7x=0 | | 4-3y=(y+4) | | -16x+3-20x+23=180 | | 45+x=3.5x | | 3a=2a+7=12 | | 2x⁴-x²-15=0 | | 12x-(6x-12)=4+5x | | 0.5r=2(0.75r-1)=0.25r=6 | | 3(v=6)=42 | | 3w+2=36 | | 2/3*z=8 | | w2-7w=18 | | 3/7w+2/9=4/9w+1/7 | | 2+a/3+5=6 | | 8d-42=1/3(6-9) | | 4(8-(-2x-5))=48x+152 | | 6(u+4)=-7u+37 | | n÷-2÷19=5 | | 7u-18=-5(u-6) | | 48=16y | | 4(8-(2x-5))=48x+152 | | -3(v-5)=-7v+47 | | (3x−7)2=−25 | | x+0.06x=208 | | 0.2(x=50)-6=0.4(3x=20) | | 12+x-5=14 |