(1/4)(16+12x)=28

Simple and best practice solution for (1/4)(16+12x)=28 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)(16+12x)=28 equation:



(1/4)(16+12x)=28
We move all terms to the left:
(1/4)(16+12x)-(28)=0
Domain of the equation: 4)(16+12x)!=0
x∈R
We add all the numbers together, and all the variables
(+1/4)(12x+16)-28=0
We multiply parentheses ..
(+12x^2+1/4*16)-28=0
We multiply all the terms by the denominator
(+12x^2+1-28*4*16)=0
We get rid of parentheses
12x^2+1-28*4*16=0
We add all the numbers together, and all the variables
12x^2-1791=0
a = 12; b = 0; c = -1791;
Δ = b2-4ac
Δ = 02-4·12·(-1791)
Δ = 85968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{85968}=\sqrt{144*597}=\sqrt{144}*\sqrt{597}=12\sqrt{597}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{597}}{2*12}=\frac{0-12\sqrt{597}}{24} =-\frac{12\sqrt{597}}{24} =-\frac{\sqrt{597}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{597}}{2*12}=\frac{0+12\sqrt{597}}{24} =\frac{12\sqrt{597}}{24} =\frac{\sqrt{597}}{2} $

See similar equations:

| 3v+7v+9v= | | 2x/5-(5-2x)/3=3x-1 | | 27=a+16 | | 5.1x=-0.3x-21.6 | | 5n-65=n+67 | | 122+122+122+x=360 | | -1.2(3x+1.1)=6.6 | | 3x^2-6x+13=0 | | 122+3x=360 | | k-3+(-8)=-8 | | 122+2x=360 | | x/3+(2(x-1))/2=x+1 | | 134.75+a=199 | | 9(10-k)=2k | | 52+52+2x=360 | | 20=p-5+12 | | 52+3x=360 | | 30=5/6m | | 5x+20-15=4 | | 8=3+s | | x6-(-10)=3 | | (2-3x)/4=(2x+2)/3 | | -8x+3(x-8)=26 | | j¸3.87=7 | | x7-12=-4 | | 14=5-2(2-x) | | 24=8d | | (x+3)/5=(2-x)/3 | | 2d+6=24 | | (x+50)+5x=90 | | 3-9x=6-8 | | 4(2x-6)=5x+10+x |

Equations solver categories