If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/4)(162+x)=55
We move all terms to the left:
(1/4)(162+x)-(55)=0
Domain of the equation: 4)(162+x)!=0We add all the numbers together, and all the variables
x∈R
(+1/4)(x+162)-55=0
We multiply parentheses ..
(+x^2+1/4*162)-55=0
We multiply all the terms by the denominator
(+x^2+1-55*4*162)=0
We get rid of parentheses
x^2+1-55*4*162=0
We add all the numbers together, and all the variables
x^2-35639=0
a = 1; b = 0; c = -35639;
Δ = b2-4ac
Δ = 02-4·1·(-35639)
Δ = 142556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{142556}=\sqrt{4*35639}=\sqrt{4}*\sqrt{35639}=2\sqrt{35639}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{35639}}{2*1}=\frac{0-2\sqrt{35639}}{2} =-\frac{2\sqrt{35639}}{2} =-\sqrt{35639} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{35639}}{2*1}=\frac{0+2\sqrt{35639}}{2} =\frac{2\sqrt{35639}}{2} =\sqrt{35639} $
| 6(x-1)-(2x+1)=5(2x+5) | | -13g=377 | | 2+2(3n-4)=4(n+3)-4 | | 3p+5=32.3p | | (3x^2+2)=(-5-10x) | | 1.25x=7.4=10.4 | | -4v+10=-2(v+2) | | 12y-8y-10=32.52 | | -4v=3v−7v | | 16z+21-30z-23=18-10z+5-9z | | 2+6x=11+-3x | | 8/7=48/x | | 10-5x=x-62 | | 5-x-2=3+4x+52 | | b+3/5=-21/3 | | 15•5+x=13x | | 5x-6+4+5=0 | | 1/7x+3/7x+8=-8 | | 7*y-4=-11 | | 51-x=133 | | -3/8m+41=-21 | | 8/11k=-29/44 | | -5-6*a=-59 | | -3/8m+41=-41 | | 3*n+4=7 | | 14+3c=7 | | x+18=68 | | 22+x=−12 | | 4*c-6=2 | | 8.2-x=2.6 | | 36x^2-480x-2465=0 | | -3*a+8=14 |