If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/4)(2x+1)=26
We move all terms to the left:
(1/4)(2x+1)-(26)=0
Domain of the equation: 4)(2x+1)!=0We add all the numbers together, and all the variables
x∈R
(+1/4)(2x+1)-26=0
We multiply parentheses ..
(+2x^2+1/4*1)-26=0
We multiply all the terms by the denominator
(+2x^2+1-26*4*1)=0
We get rid of parentheses
2x^2+1-26*4*1=0
We add all the numbers together, and all the variables
2x^2-103=0
a = 2; b = 0; c = -103;
Δ = b2-4ac
Δ = 02-4·2·(-103)
Δ = 824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{824}=\sqrt{4*206}=\sqrt{4}*\sqrt{206}=2\sqrt{206}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{206}}{2*2}=\frac{0-2\sqrt{206}}{4} =-\frac{2\sqrt{206}}{4} =-\frac{\sqrt{206}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{206}}{2*2}=\frac{0+2\sqrt{206}}{4} =\frac{2\sqrt{206}}{4} =\frac{\sqrt{206}}{2} $
| p+12=32 | | 1/4(2x=1)=26 | | x-1=2(x+1)/6 | | 10(0.3)=a | | 3(3x+3-)-5x-4=25 | | 9(x+4)/5=2x-4 | | 29.8n=178.8 | | 8=1/3x+22 | | 3(x-17)=-9(3x-1) | | -11x-10=-6x-44 | | 2.5(x-4)=1.5x-2 | | 0.2(25x-40)=0.5x+1.75) | | 8x+22=102 | | 10x+43+11x+74=180 | | 10x-3=14x-43 | | 8x+51=89=180 | | 7(2.72)^3x=175 | | 0.4x=0.04 | | -9+7y+1=10y | | 6x+29+10x-89=180 | | 2(3x+9)=-47+35 | | 3x=60=3 | | 3(2x-3)=-(-6x+-9) | | 1x+20=31 | | 2b+3/5=-1 | | 11x+18+13x-54=180 | | 6.1+2k=8.5 | | 43=8d | | 8y=89 | | 72=j/3 | | 32+6x=-14x+32 | | 8k+38=-3(-6-4k) |