If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/4)(8x+20)=27
We move all terms to the left:
(1/4)(8x+20)-(27)=0
Domain of the equation: 4)(8x+20)!=0We add all the numbers together, and all the variables
x∈R
(+1/4)(8x+20)-27=0
We multiply parentheses ..
(+8x^2+1/4*20)-27=0
We multiply all the terms by the denominator
(+8x^2+1-27*4*20)=0
We get rid of parentheses
8x^2+1-27*4*20=0
We add all the numbers together, and all the variables
8x^2-2159=0
a = 8; b = 0; c = -2159;
Δ = b2-4ac
Δ = 02-4·8·(-2159)
Δ = 69088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{69088}=\sqrt{16*4318}=\sqrt{16}*\sqrt{4318}=4\sqrt{4318}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{4318}}{2*8}=\frac{0-4\sqrt{4318}}{16} =-\frac{4\sqrt{4318}}{16} =-\frac{\sqrt{4318}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{4318}}{2*8}=\frac{0+4\sqrt{4318}}{16} =\frac{4\sqrt{4318}}{16} =\frac{\sqrt{4318}}{4} $
| 4(-x+4)=23 | | 1/4(8x+20)=27 | | 2(u–4)=10 | | 28+26(1+25m)=-6(19m-9) | | 16=18+y6 | | 126+26+a+a=360 | | 7a-29a=9(a+16)-36(4-9a) | | -10p+9p=12@-12 | | -20-20s=-8s-15s+16 | | 4x+4=-x+4 | | c8=3 | | 18+15q=-12+17q | | -9y=-4−8y | | 29.53=13.81+3x | | 0.2(2x+1/2)=5(0.5+(-2)) | | -13-17y=-18y | | -5z-1=-2z+14 | | -3+2d+2d=-6+7d | | 0.2(2x+1/2)=5(0.5-2) | | -2z−10=-z | | 6x-5=12x+6 | | -3m+10=-8m-10 | | 2k+-44=44 | | -3(2x-4)=4{3/2x-3} | | -35(x+31)=-30(x+28) | | 8.4m=4.2 | | U-5=9-u | | -8h-9=-5h+5-5h | | -4.9x^2+10x+828=0 | | r+4.1=5.9 | | 5(4x+54)=2(x+36) | | 3.3=6.8-0.7x |