(1/4)(9+x)=6

Simple and best practice solution for (1/4)(9+x)=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)(9+x)=6 equation:



(1/4)(9+x)=6
We move all terms to the left:
(1/4)(9+x)-(6)=0
Domain of the equation: 4)(9+x)!=0
x∈R
We add all the numbers together, and all the variables
(+1/4)(x+9)-6=0
We multiply parentheses ..
(+x^2+1/4*9)-6=0
We multiply all the terms by the denominator
(+x^2+1-6*4*9)=0
We get rid of parentheses
x^2+1-6*4*9=0
We add all the numbers together, and all the variables
x^2-215=0
a = 1; b = 0; c = -215;
Δ = b2-4ac
Δ = 02-4·1·(-215)
Δ = 860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{860}=\sqrt{4*215}=\sqrt{4}*\sqrt{215}=2\sqrt{215}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{215}}{2*1}=\frac{0-2\sqrt{215}}{2} =-\frac{2\sqrt{215}}{2} =-\sqrt{215} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{215}}{2*1}=\frac{0+2\sqrt{215}}{2} =\frac{2\sqrt{215}}{2} =\sqrt{215} $

See similar equations:

| (x-3)^2-4=44 | | 34+3y=91 | | -2z=-3z+9 | | 2c+4(c=3) | | 4x^2+18=-32 | | 6m=10+5m | | 1/4(9+x)=6 | | 4j-5=23 | | 6m+10=5m | | 4x+7x-16=x+8 | | 4(5c-1)-5=17c+9 | | 1/6(12z-18)=22-3 | | q-22=0 | | -1.2k=-6 | | 1/6x^2=1/2x+7/6x^2 | | −6.5+d=−7.2. | | 4c=5c+6 | | y=2*41+7 | | 7x-11=(-46) | | 4x-2(1-3x)=6 | | b÷8=96 | | 38-17=3(x-4) | | 80+45+x=180 | | 9y^2=14y | | 4x+(7x-16)=(x+8) | | 60+40+8x=180 | | -9n+12=-8n-17 | | 12j-5+16j-4=18j-7-5j-12 | | 19=3z+2 | | 1x+(x•5)+(x+35)=365 | | 2q=7-5 | | 19z-15z+100=200 |

Equations solver categories