(1/4)(n+5)=16

Simple and best practice solution for (1/4)(n+5)=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)(n+5)=16 equation:



(1/4)(n+5)=16
We move all terms to the left:
(1/4)(n+5)-(16)=0
Domain of the equation: 4)(n+5)!=0
n∈R
We add all the numbers together, and all the variables
(+1/4)(n+5)-16=0
We multiply parentheses ..
(+n^2+1/4*5)-16=0
We multiply all the terms by the denominator
(+n^2+1-16*4*5)=0
We get rid of parentheses
n^2+1-16*4*5=0
We add all the numbers together, and all the variables
n^2-319=0
a = 1; b = 0; c = -319;
Δ = b2-4ac
Δ = 02-4·1·(-319)
Δ = 1276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1276}=\sqrt{4*319}=\sqrt{4}*\sqrt{319}=2\sqrt{319}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{319}}{2*1}=\frac{0-2\sqrt{319}}{2} =-\frac{2\sqrt{319}}{2} =-\sqrt{319} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{319}}{2*1}=\frac{0+2\sqrt{319}}{2} =\frac{2\sqrt{319}}{2} =\sqrt{319} $

See similar equations:

| k2– -10= 11 | | 8=2s+2 | | 19x+18=-5 | | 8(3+x)=-16 | | C(x)=50x+6000 | | 3/4=n/24 | | -16-x=7x-8 | | b+b/b-3=2 | | 1=3v–8 | | .25x+7=10 | | 22-22a=-6a+6 | | 3=2p–3 | | b+b=2/b-3=2 | | 3(u–7)=6 | | 8-8(3x+5)=-5+6(1+x) | | 6t= 2 | | 5x+47=2x+63 | | X^2+41x+4=90 | | -6/a=11/2 | | n-8n=24 | | 4(2x-1)(3-5x)=3/4-3x^2 | | 2k–7=3 | | X^2+41x+86=0 | | 2(a-8)+7=5(a-2)-2a-19 | | 3r–2=1 | | 5/10=3/h | | 3+-3t=15 | | F(x)=2^2+4 | | 4(-6)=4(-6p+8) | | 16x+12x2=51 | | 13x-11=54 | | (3x+60)+5x=360 |

Equations solver categories