(1/4)(x+4)=9

Simple and best practice solution for (1/4)(x+4)=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)(x+4)=9 equation:



(1/4)(x+4)=9
We move all terms to the left:
(1/4)(x+4)-(9)=0
Domain of the equation: 4)(x+4)!=0
x∈R
We add all the numbers together, and all the variables
(+1/4)(x+4)-9=0
We multiply parentheses ..
(+x^2+1/4*4)-9=0
We multiply all the terms by the denominator
(+x^2+1-9*4*4)=0
We get rid of parentheses
x^2+1-9*4*4=0
We add all the numbers together, and all the variables
x^2-143=0
a = 1; b = 0; c = -143;
Δ = b2-4ac
Δ = 02-4·1·(-143)
Δ = 572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{572}=\sqrt{4*143}=\sqrt{4}*\sqrt{143}=2\sqrt{143}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{143}}{2*1}=\frac{0-2\sqrt{143}}{2} =-\frac{2\sqrt{143}}{2} =-\sqrt{143} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{143}}{2*1}=\frac{0+2\sqrt{143}}{2} =\frac{2\sqrt{143}}{2} =\sqrt{143} $

See similar equations:

| 2x+14=-(7x+6) | | 2x+4+8x-50=34 | | 49-y=267 | | 133=207-w | | 6n+9=-3n-21-9 | | 246=-u+77 | | 246=u+77 | | 4(x+2)=2(2x+9)-10 | | -v+236=84 | | (y+4)^2-75=0 | | 5(8+3x)=x | | 12x=535+4.5x | | (-5x)+(7-12x)+(-8x+3)=180 | | 16=−9w-67w | | 5(8+3x=) | | 11x+12x=22x | | 25x-14=16x-5x | | 843-483=x | | 3x=84+35 | | (5×/2)-4=(2x-7)/6 | | 2/3p+5/3=17/3 | | x-(5x-1)-7-5/10=1 | | x-(5x-1)-7-5/10=2 | | 8p-3p=35 | | F(x)=2x³+28x+13 | | -6a+147+-2a+135=180 | | 15.3=5.1c | | -6a+147+-2a+35=180 | | 7(x-4)^3/2=56 | | -7.5n-2=73 | | -2(4s-1)-2=-3(7s+2)-4 | | (1=32000)-(36000=x) |

Equations solver categories