(1/4)a+(1/1200)a=400

Simple and best practice solution for (1/4)a+(1/1200)a=400 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)a+(1/1200)a=400 equation:



(1/4)a+(1/1200)a=400
We move all terms to the left:
(1/4)a+(1/1200)a-(400)=0
Domain of the equation: 4)a!=0
a!=0/1
a!=0
a∈R
Domain of the equation: 1200)a!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
(+1/4)a+(+1/1200)a-400=0
We multiply parentheses
a^2+a^2-400=0
We add all the numbers together, and all the variables
2a^2-400=0
a = 2; b = 0; c = -400;
Δ = b2-4ac
Δ = 02-4·2·(-400)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*2}=\frac{0-40\sqrt{2}}{4} =-\frac{40\sqrt{2}}{4} =-10\sqrt{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*2}=\frac{0+40\sqrt{2}}{4} =\frac{40\sqrt{2}}{4} =10\sqrt{2} $

See similar equations:

| 12=r/5+7 | | (5t-3)^2=17 | | x−10=3x−12 | | x+44=2x-2 | | -2(3x-10)+x=-3(4x+7) | | 8-4x=8x-16 | | 2−5/1r=2r+1 | | 8=4x=8x-16 | | 2−5/1​r=2r+1 | | -3x+12-9x+8=3(4x+7) | | 0.9r-0.8=5 | | 36^-2x=216^3x | | r-(-13)=11 | | f-5/2=12 | | 26n-10=14n+26 | | 5x+40=12x+44 | | 48=7x+3(-2x+14) | | -3x+2(-3x+5)=-62 | | r/5-8=4 | | 30+100p=90+40p | | 16/12=8/y | | 4x-3(-6x-4)=-142 | | 9/10r-4/5=5 | | -6x-2(-4x+2)=-22 | | h+15=6h-10 | | (r+9)÷4=3.5 | | -168=-5x+6(5x-3) | | 9-3a=2a+4 | | x-15=15.91 | | 4x-3(-7x+19)=193 | | x-$15=$15.91 | | 4x2=32 |

Equations solver categories