If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/4)n-(3/2)=1
We move all terms to the left:
(1/4)n-(3/2)-(1)=0
Domain of the equation: 4)n!=0determiningTheFunctionDomain (1/4)n-1-(3/2)=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+1/4)n-1-(+3/2)=0
We multiply parentheses
n^2-1-(+3/2)=0
We get rid of parentheses
n^2-1-3/2=0
We multiply all the terms by the denominator
n^2*2-3-1*2=0
We add all the numbers together, and all the variables
n^2*2-5=0
Wy multiply elements
2n^2-5=0
a = 2; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·2·(-5)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*2}=\frac{0-2\sqrt{10}}{4} =-\frac{2\sqrt{10}}{4} =-\frac{\sqrt{10}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*2}=\frac{0+2\sqrt{10}}{4} =\frac{2\sqrt{10}}{4} =\frac{\sqrt{10}}{2} $
| 209=119-u | | x+13=5+12-1 | | -7x-3(3x-37)=255 | | 3(h-11)=6 | | 5(3x+39)+7(x+27)=16 | | 2x+12=3×+3 | | 70=-x+222 | | 0.4(x-20)-0.2x=36 | | 11k+15=18 | | -2x-x+3x-6+6=0 | | -5(t-4)+4=5-(t-3) | | 15x+195+7x+34=16 | | 5-4x=6+2x= | | 3y+-y=6 | | -w+27=172 | | (1/9)x^2-3=0 | | .5x+18=4x-6 | | 5-4x=6+2= | | 7g=14-5g=-8 | | -6=1/4z-3 | | -.74=((x+35.6)/10.3) | | 5y-4+41=6y+40-3y | | 14m-17m+-12=-3 | | 2x-3x=32 | | 7y+44=2y+11 | | |4x+8|+9=11 | | 75x=24 | | X/4+10=2x-4 | | 98-y=209 | | 16=4y-52 | | x-1/10=6/5 | | 17b-16b-1=8 |