(1/4)x+(1/16)x=10

Simple and best practice solution for (1/4)x+(1/16)x=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)x+(1/16)x=10 equation:



(1/4)x+(1/16)x=10
We move all terms to the left:
(1/4)x+(1/16)x-(10)=0
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 16)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/4)x+(+1/16)x-10=0
We multiply parentheses
x^2+x^2-10=0
We add all the numbers together, and all the variables
2x^2-10=0
a = 2; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·2·(-10)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*2}=\frac{0-4\sqrt{5}}{4} =-\frac{4\sqrt{5}}{4} =-\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*2}=\frac{0+4\sqrt{5}}{4} =\frac{4\sqrt{5}}{4} =\sqrt{5} $

See similar equations:

| 12​(x+4​)=4​(3x+4​)+32 | | X^2-2000x=-2690000 | | 14-5a-8+2a= | | X^2-2000x=-60000 | | 60h+150=500 | | 4*z+3=5+z | | 38+(5n-3)=20n+26 | | 3x−35+2x=−15 | | H(t)=-5t^2+14t+2 | | 3(x-4)+x=4x+10 | | 15.2*0.25-48.51/14.7)/x=((13/44-2/11-5/66/5/2)*6/5))/9 | | (15.2*0.25-48.51/14.7)/x=((13/44-2/11-5/66/5/2)*6/5))/9 | | 20m+50=250 | | 2(11+y)+y=19 | | -(62)=-18x | | (180n-360)/n=(360/n)8 | | 200=5s+7 | | 8^(x-2)=16 | | 200=5s | | 2x(1-3x)+5x(3-x)=17x-11x^2 | | 9f^2+9f−4=0 | | -4+9h+8h=-4+17h | | -2+19u=3u+16-2 | | 3^(7x*3)=81 | | 2b^2-10b+12=0 | | 40*x=16 | | Y+1/2x=-6 | | 17-10c-10c=-20c+17 | | 16f+18=3f-18+16f | | 43+n=-80 | | -10.1=w+5.7 | | 50m+20=10 |

Equations solver categories