(1/4)x-2/3=3

Simple and best practice solution for (1/4)x-2/3=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)x-2/3=3 equation:



(1/4)x-2/3=3
We move all terms to the left:
(1/4)x-2/3-(3)=0
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (1/4)x-3-2/3=0
We add all the numbers together, and all the variables
(+1/4)x-3-2/3=0
We multiply parentheses
x^2-3-2/3=0
We multiply all the terms by the denominator
x^2*3-2-3*3=0
We add all the numbers together, and all the variables
x^2*3-11=0
Wy multiply elements
3x^2-11=0
a = 3; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·3·(-11)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*3}=\frac{0-2\sqrt{33}}{6} =-\frac{2\sqrt{33}}{6} =-\frac{\sqrt{33}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*3}=\frac{0+2\sqrt{33}}{6} =\frac{2\sqrt{33}}{6} =\frac{\sqrt{33}}{3} $

See similar equations:

| 3(5x-2)=3x+5x-2 | | (3x)4=6x+8 | | 3/5(15x+20)=1/3(27x+36) | | 4y×4y+3=10×10 | | 8g+8=-8 | | X^y=178 | | 4(x−6)=8 | | -18x+24=-12x | | 5x=25/5=17 | | 2(3x-1)=4(10-2x) | | 1.99=x^2-4x+5 | | 2x-16=3x-12+5x | | 32=2x+96 | | 10x+32=15x-28 | | 3x-8+2x=5x+4 | | 7(3x-1)-2x=31 | | 10(z-84)=60 | | 2.32x+4=5.3824+2x | | -21=3c-3(6-2c) | | 8k-25=23 | | 3x+5+25=5x | | -2-1/5x=1/5x+6 | | 7-2(9x+7)=-6 | | -8x+15-4x=-3(4x-5)= | | 5x-10+4x-8=180 | | 5+2x+x=-2 | | 13-3x=52 | | 2(8x-5)-6x+15=10x+5 | | -2(y+3)=3(y+4)+ | | 6j=25+-55 | | 4g=3g+8 | | -109.7+184=t |

Equations solver categories