If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/5)(25x+15)-3=2x+9+3x
We move all terms to the left:
(1/5)(25x+15)-3-(2x+9+3x)=0
Domain of the equation: 5)(25x+15)!=0We add all the numbers together, and all the variables
x∈R
(+1/5)(25x+15)-(5x+9)-3=0
We get rid of parentheses
(+1/5)(25x+15)-5x-9-3=0
We multiply parentheses ..
(+25x^2+1/5*15)-5x-9-3=0
We multiply all the terms by the denominator
(+25x^2+1-5x*5*15)-9*5*15)-3*5*15)=0
We add all the numbers together, and all the variables
(+25x^2+1-5x*5*15)=0
We get rid of parentheses
25x^2-5x*5*15+1=0
Wy multiply elements
25x^2-375x*1+1=0
Wy multiply elements
25x^2-375x+1=0
a = 25; b = -375; c = +1;
Δ = b2-4ac
Δ = -3752-4·25·1
Δ = 140525
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140525}=\sqrt{25*5621}=\sqrt{25}*\sqrt{5621}=5\sqrt{5621}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-375)-5\sqrt{5621}}{2*25}=\frac{375-5\sqrt{5621}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-375)+5\sqrt{5621}}{2*25}=\frac{375+5\sqrt{5621}}{50} $
| 18u+15=13u | | w=8-2.5 | | -3x+18=-9x | | k-10/2=-11 | | 11p=132 | | 9t-3=1+10t | | 544-j=299 | | -11k-11=19-5k | | -3=n-11* | | -4-9n=-10n-20 | | 8x+2(4x-7)=50 | | 15x-12=-23 | | -12(12+3x)=-8(-9+3x | | 69+28j=293 | | -10h=-9h-9 | | -113=41-11x | | −3w+27= 6 | | 57=-v/8 | | 8=8p-13-3p | | z•17=22 | | 3x−10=−16+7x−6 | | 3=0.2*x | | (x+8)+(6x-10)=145 | | x*1.2=20.8333333333 | | 4-y=163 | | -7+3(n-9)=22 | | -z=-3z-6 | | 6=a/16 | | 19+2n=5n-17 | | -4x(x+12)=-22 | | -13x-71=-240 | | −3w+27= 6 |