(1/5)(5x+3)=4

Simple and best practice solution for (1/5)(5x+3)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5)(5x+3)=4 equation:



(1/5)(5x+3)=4
We move all terms to the left:
(1/5)(5x+3)-(4)=0
Domain of the equation: 5)(5x+3)!=0
x∈R
We add all the numbers together, and all the variables
(+1/5)(5x+3)-4=0
We multiply parentheses ..
(+5x^2+1/5*3)-4=0
We multiply all the terms by the denominator
(+5x^2+1-4*5*3)=0
We get rid of parentheses
5x^2+1-4*5*3=0
We add all the numbers together, and all the variables
5x^2-59=0
a = 5; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·5·(-59)
Δ = 1180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1180}=\sqrt{4*295}=\sqrt{4}*\sqrt{295}=2\sqrt{295}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{295}}{2*5}=\frac{0-2\sqrt{295}}{10} =-\frac{2\sqrt{295}}{10} =-\frac{\sqrt{295}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{295}}{2*5}=\frac{0+2\sqrt{295}}{10} =\frac{2\sqrt{295}}{10} =\frac{\sqrt{295}}{5} $

See similar equations:

| (3-2z)(3-z+(3z*3z))=0 | | 40x^2+80x-100=0 | | (3-2z)(3-z+3z^2)=0 | | 45n^2+20=0 | | 8x+21=3×11 | | 6z=39-2z | | 14*6=3*n | | 8x+21=3÷11 | | (x+2)(x-9)=(7x+17) | | 8x+21=3/11 | | 5(y-1)+16(2y+3)=3(2y-7) | | 10*62=n*6.2 | | y=-9-4-9 | | 0*53=n*34 | | 3(4x+1)=6x+2 | | n/5.9=11 | | 2x+8-x=3x-12 | | 9.8x=63.7 | | -5x=10-15. | | 28*n=7*12 | | 5x=10-15. | | (-6d=2)-(7=2d) | | 36*n=36 | | p/1.2=25/15 | | 17/15+s/15=-4 | | 18+30=6(2x-1) | | 13+4K=13+5k | | -67b+6=9b+43 | | 1=8x-6=2=7x | | 8p-8=6(-7p+7) | | 5x-81=360 | | 63-x=2x=3 |

Equations solver categories