(1/5)(x+2)=3

Simple and best practice solution for (1/5)(x+2)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5)(x+2)=3 equation:



(1/5)(x+2)=3
We move all terms to the left:
(1/5)(x+2)-(3)=0
Domain of the equation: 5)(x+2)!=0
x∈R
We add all the numbers together, and all the variables
(+1/5)(x+2)-3=0
We multiply parentheses ..
(+x^2+1/5*2)-3=0
We multiply all the terms by the denominator
(+x^2+1-3*5*2)=0
We get rid of parentheses
x^2+1-3*5*2=0
We add all the numbers together, and all the variables
x^2-29=0
a = 1; b = 0; c = -29;
Δ = b2-4ac
Δ = 02-4·1·(-29)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{29}}{2*1}=\frac{0-2\sqrt{29}}{2} =-\frac{2\sqrt{29}}{2} =-\sqrt{29} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{29}}{2*1}=\frac{0+2\sqrt{29}}{2} =\frac{2\sqrt{29}}{2} =\sqrt{29} $

See similar equations:

| w+3/7=-5/9 | | 12x+18=21-7x | | a/5=2.75 | | 2g+13=43 | | 3x2^2-12x=0 | | 0.563+m=4.93 | | 12^x=200000 | | 3(n-5)=-11 | | 8k-4=60 | | 6p=120p= | | -5x(x+2)=25 | | 6x+2=120 | | y=1/2(-12)-2 | | |4-8a|=68 | | r^2−4r−5=0 | | 2r+4/6=5r-1/14 | | 1890=(x+25)18 | | 0.128-0.035x=-0.072x+0.235 | | 1890(x+25)=18 | | -(6x-5)=-6x*13 | | 4x+15x+-12=19x+2 | | 3(5x-4)+2(15-2x)-5(2x+1)=-1 | | 60=12x-18 | | (12,566)x=100 | | 45=9x-27 | | 9=2b(b+5) | | 3x+x+13+63=x | | 100=5x+96 | | 8(x+3)^2/3=32 | | 8x-7+2x-8=25 | | 30=3x+72 | | -8b+7+6b=-3+12 |

Equations solver categories