(1/5)+(2/5)x=x+1

Simple and best practice solution for (1/5)+(2/5)x=x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5)+(2/5)x=x+1 equation:



(1/5)+(2/5)x=x+1
We move all terms to the left:
(1/5)+(2/5)x-(x+1)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/5)x-(x+1)+(+1/5)=0
We multiply parentheses
2x^2-(x+1)+(+1/5)=0
We get rid of parentheses
2x^2-x-1+1/5=0
We multiply all the terms by the denominator
2x^2*5-x*5+1-1*5=0
We add all the numbers together, and all the variables
2x^2*5-x*5-4=0
Wy multiply elements
10x^2-5x-4=0
a = 10; b = -5; c = -4;
Δ = b2-4ac
Δ = -52-4·10·(-4)
Δ = 185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{185}}{2*10}=\frac{5-\sqrt{185}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{185}}{2*10}=\frac{5+\sqrt{185}}{20} $

See similar equations:

| (m/3)-4=(7/3)-(m/2) | | 1/2x+2=3/2x-6 | | (-3r)=18 | | 2/5c+4/5c+2=c+7 | | 14x+6=-6+16x | | 75-9x=5(-4+2) | | 2(u-9)-6=-2(-6u+6)-u | | 2x-5(x-4)=-2(x+3 | | 2x+9=3(x+9) | | F=90t | | m=2;16/2m, | | 3x-24=-2x+28 | | -3.5+p/8=-5.2 | | 2x+4=3(5-x) | | -3(6u-2)+5u=5(u+4) | | 7x+13(x=6) | | m=2;16 | | 20(8000-b)+30b=209000 | | 3x-23=-2x+28 | | r=3,6,7,9, | | 1/5(10x-15)=1/4(8-4x) | | 4h+3=-17+14h | | 5a+14=7a+8 | | 5a+14a=7a+8 | | 8d+2d-d+6=2d | | 5x+2=0x+3 | | 4-22/3=3/4-5z/6 | | 18r−14r=12 | | -6n+13-6n=-83 | | -6n+13-n=-83 | | -8n-4(2n+7)=-156 | | -10x^2+20x+80=0 |

Equations solver categories