(1/5)n-1/3=8/3

Simple and best practice solution for (1/5)n-1/3=8/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5)n-1/3=8/3 equation:



(1/5)n-1/3=8/3
We move all terms to the left:
(1/5)n-1/3-(8/3)=0
Domain of the equation: 5)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+1/5)n-1/3-(+8/3)=0
We multiply parentheses
n^2-1/3-(+8/3)=0
We get rid of parentheses
n^2-1/3-8/3=0
We multiply all the terms by the denominator
n^2*3-1-8=0
We add all the numbers together, and all the variables
n^2*3-9=0
Wy multiply elements
3n^2-9=0
a = 3; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·3·(-9)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{3}}{2*3}=\frac{0-6\sqrt{3}}{6} =-\frac{6\sqrt{3}}{6} =-\sqrt{3} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{3}}{2*3}=\frac{0+6\sqrt{3}}{6} =\frac{6\sqrt{3}}{6} =\sqrt{3} $

See similar equations:

| x/4-7/2=-x/4 | | 24n=21 | | B+2b=26 | | |x^2+4x|=-12 | | 6(4x-3)-2(4x-10)=3(5x+3)-7 | | 1/5k-(k+1/2)=1/25(k+1) | | 3r-7=1-r | | 18=m=18 | | 7=1/6s+10 | | -7=m=8 | | 33=y/4+11 | | 1.4x+3.2=0 | | 180=45+k+2k | | 69+x=36 | | 7x-15=-4(-2x+2) | | 7x-15=-4(-2x+2 | | 1/8+x=6 | | 2(4x+2)=-4x-12(x-1) | | 4(x+3.8)=27.2 | | 24-x=3x+12 | | 15+4x=35 | | X=3t-4 | | -83.19=1.5(-6.17-6.2b) | | 3(×+2)+2(×-1)=5x-7 | | 1÷0.2+j0.8=0.294-j1.176 | | 1.97x=-2.7 | | 5u+66=114 | | 0-0=4x-3/2 | | (5-7i)=(3-8i) | | 0=4x-3÷2 | | 2(5x-9)=38 | | 4/5k-(k+1/3)=1/5(k+3) |

Equations solver categories