(1/5)x+1/2=2

Simple and best practice solution for (1/5)x+1/2=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5)x+1/2=2 equation:



(1/5)x+1/2=2
We move all terms to the left:
(1/5)x+1/2-(2)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (1/5)x-2+1/2=0
We add all the numbers together, and all the variables
(+1/5)x-2+1/2=0
We multiply parentheses
x^2-2+1/2=0
We multiply all the terms by the denominator
x^2*2+1-2*2=0
We add all the numbers together, and all the variables
x^2*2-3=0
Wy multiply elements
2x^2-3=0
a = 2; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·2·(-3)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*2}=\frac{0-2\sqrt{6}}{4} =-\frac{2\sqrt{6}}{4} =-\frac{\sqrt{6}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*2}=\frac{0+2\sqrt{6}}{4} =\frac{2\sqrt{6}}{4} =\frac{\sqrt{6}}{2} $

See similar equations:

| 9x-5=2(4x-1)+x-3 | | 1/5x+1/2=2 | | 4x+9=36+7x | | 4x+2.5-2.5=4x | | 3+x=-7x+6 | | 1/5(15)+12=x | | (3x-1)=3/8(x+1) | | (p-3)*0.8=18.40 | | 41/2=d/64 | | 7x+16-3x-7=-11 | | 700+80+n=700+80+n= | | 1/5x+12=x | | 13-2p=5 | | 12+1/5x=x | | .2x+13=x-107 | | 199+2h=1093 | | 5x+12-9x=16 | | 8+3x=5x-14 | | F(10)=2x+6 | | 4y-1=3(-5-6) | | -3.1x+7.4x=1.5x-6(x-3/2 | | (5y+2=12)y= | | 5x-2-8x=31 | | 3/4r=2 | | 7x-8=-7x-8 | | 4(4x-1)+8(5+3x)=-44 | | 3x-6=66-1x | | 3/4•r=2 | | 3x-7+12x=53 | | 3x=10+9 | | 8x-14=3x+5+4x | | 2-3x=3x-64 |

Equations solver categories