If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/5)x+4/5=6/5
We move all terms to the left:
(1/5)x+4/5-(6/5)=0
Domain of the equation: 5)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+1/5)x+4/5-(+6/5)=0
We multiply parentheses
x^2+4/5-(+6/5)=0
We get rid of parentheses
x^2+4/5-6/5=0
We multiply all the terms by the denominator
x^2*5+4-6=0
We add all the numbers together, and all the variables
x^2*5-2=0
Wy multiply elements
5x^2-2=0
a = 5; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·5·(-2)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*5}=\frac{0-2\sqrt{10}}{10} =-\frac{2\sqrt{10}}{10} =-\frac{\sqrt{10}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*5}=\frac{0+2\sqrt{10}}{10} =\frac{2\sqrt{10}}{10} =\frac{\sqrt{10}}{5} $
| 9x=12=111 | | 14400=1600t-16t2 | | -36=-4x+20 | | 5.6+(-0.2x)=4.8 | | 14x+3=121 | | (3x-2)/7x=1/x | | x/3=350 | | -36=-4x20 | | 32=48t-16^2 | | 8-x=2x+7 | | 7-2h=-13 | | 5(x-2)+2=8(x-3)+1 | | x/3=550 | | -20=d-8= | | 2—-2y=-2 | | 3.3=2(3.14)(r) | | (x-5)-29=90 | | 6+-3h=-6 | | X^2=-16x-36 | | -8=⅔x | | -(9x/21)=3 | | x-5)+29=90 | | 3x+5=-8x-6 | | y=15000•1.04^25 | | -20=a+11= | | 7r-12=93 | | 10(10*42)=13(13*x) | | 6x+78=3x+135 | | x²+196=0 | | -15=c-7= | | 8=1/4(12d+20) | | 95=5x+40 |