(1/5)x-(2/3)=6

Simple and best practice solution for (1/5)x-(2/3)=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5)x-(2/3)=6 equation:



(1/5)x-(2/3)=6
We move all terms to the left:
(1/5)x-(2/3)-(6)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (1/5)x-6-(2/3)=0
We add all the numbers together, and all the variables
(+1/5)x-6-(+2/3)=0
We multiply parentheses
x^2-6-(+2/3)=0
We get rid of parentheses
x^2-6-2/3=0
We multiply all the terms by the denominator
x^2*3-2-6*3=0
We add all the numbers together, and all the variables
x^2*3-20=0
Wy multiply elements
3x^2-20=0
a = 3; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·3·(-20)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*3}=\frac{0-4\sqrt{15}}{6} =-\frac{4\sqrt{15}}{6} =-\frac{2\sqrt{15}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*3}=\frac{0+4\sqrt{15}}{6} =\frac{4\sqrt{15}}{6} =\frac{2\sqrt{15}}{3} $

See similar equations:

| 96-8c=20-12 | | 26+p=-3 | | -1x/5-4=9 | | 10j=19 | | 1.1x+1.2x-5.4=-4 | | s+4.3=8 | | p+4.5=6.9 | | (3x+5)2=2/3 | | 3/5=y+4/5 | | s+2.1=5.3 | | 1x/3+10=55 | | v+22=3 | | 5x-2)^2+(2-5x)(3x+1)=0 | | x4-7x=10 | | Y=2x+9= | | a=7+6 | | (2r+7)^2-1=0 | | 5x2-7x+8=0 | | 58x-29=1102 | | x^2-4x+3x=30 | | 9x+12=3x-5 | | f(1/2)=2 | | 321=a^2 | | 8x-4=-3x+10 | | 7x+14+8=4x+16 | | x+9=17;7 | | 47t−8=3t− | | -0.680+0.0626x-0.00054x^2=0 | | 6x-4-13=x | | 3x²+23+30=0 | | 52=(6x+4) | | 4+3y+3=3(y+2) |

Equations solver categories