(1/5x)-40=2x-4

Simple and best practice solution for (1/5x)-40=2x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5x)-40=2x-4 equation:



(1/5x)-40=2x-4
We move all terms to the left:
(1/5x)-40-(2x-4)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/5x)-(2x-4)-40=0
We get rid of parentheses
1/5x-2x+4-40=0
We multiply all the terms by the denominator
-2x*5x+4*5x-40*5x+1=0
Wy multiply elements
-10x^2+20x-200x+1=0
We add all the numbers together, and all the variables
-10x^2-180x+1=0
a = -10; b = -180; c = +1;
Δ = b2-4ac
Δ = -1802-4·(-10)·1
Δ = 32440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32440}=\sqrt{4*8110}=\sqrt{4}*\sqrt{8110}=2\sqrt{8110}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-2\sqrt{8110}}{2*-10}=\frac{180-2\sqrt{8110}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+2\sqrt{8110}}{2*-10}=\frac{180+2\sqrt{8110}}{-20} $

See similar equations:

| −4x−6=3x+1 | | 5x-2(x+4)=1/2(2x+8) | | 100x+0.40x=60+0.90x-0.40x | | 22h+10.00=98 | | 13x+5=-8 | | 2b+9.1=-3.54 | | -7g=-6g+4 | | 20=5/8g | | -7h-8=-5h | | -4=(k+3)/2 | | z-9=1/6 | | 3+x+2x+1=19 | | 5x-6=2+(3x-4) | | -8.2=m4.1 | | x+6=3(x+5)−7 | | 140=4x+72 | | -(12)/(7)x=-36 | | -10+5y=10+3y | | -9b-3=3-3b | | h/4-5=5 | | (1x/5x)-40=2x-4 | | x-5=1/4 | | 2-5(a+3)=27 | | 6x-5-3x+3=0 | | 12p-4p+3=0 | | (3)/(4)+(4m)/(9)=(47)/(36) | | 5x+1/2=7/8 | | 80+(10+9)w=175 | | 5a-4(3a)=14 | | 10+x3/4=40 | | -8m-4=-12 | | 20+1/3n=5.6+1/15n |

Equations solver categories