(1/5y-1)=2/3y+17

Simple and best practice solution for (1/5y-1)=2/3y+17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5y-1)=2/3y+17 equation:



(1/5y-1)=2/3y+17
We move all terms to the left:
(1/5y-1)-(2/3y+17)=0
Domain of the equation: 5y-1)!=0
y∈R
Domain of the equation: 3y+17)!=0
y∈R
We get rid of parentheses
1/5y-2/3y-1-17=0
We calculate fractions
3y/15y^2+(-10y)/15y^2-1-17=0
We add all the numbers together, and all the variables
3y/15y^2+(-10y)/15y^2-18=0
We multiply all the terms by the denominator
3y+(-10y)-18*15y^2=0
Wy multiply elements
-270y^2+3y+(-10y)=0
We get rid of parentheses
-270y^2+3y-10y=0
We add all the numbers together, and all the variables
-270y^2-7y=0
a = -270; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·(-270)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*-270}=\frac{0}{-540} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*-270}=\frac{14}{-540} =-7/270 $

See similar equations:

| 56=-3s+11 | | |-4y+10|=30 | | -44=22+6y | | -k=2(-2k-5 | | z/2+12=20 | | 3c-16=55 | | -16x-15=-20 | | 180=65+(2x–10)+(3x+15) | | -×+3x=4x+10 | | 9(h-87)=36 | | x2+14x+21=0 | | 12+y+17=59 | | 5x/4+2x=4 | | x+2(2x+1)=-8 | | 90=9(j+1) | | 3x+9-6x=24 | | 13.2=2(3.7+m) | | Y=0.45x-18 | | X=54y= | | 6+2.x=21 | | 4−9q=10−6q | | 45.00n+17.99=422.99 | | 1.1=j−7.52 | | 5+15=(-5x) | | 422.99=(n+17.99)45.00 | | Y=-3x-40 | | –7+2j=3j | | 0=-u+-9 | | x^2+10x=16=0 | | 4n–5=11 | | 45.00(n+17.99)=422.99 | | √3x+40=0 |

Equations solver categories