(1/6)j=10

Simple and best practice solution for (1/6)j=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/6)j=10 equation:



(1/6)j=10
We move all terms to the left:
(1/6)j-(10)=0
Domain of the equation: 6)j!=0
j!=0/1
j!=0
j∈R
We add all the numbers together, and all the variables
(+1/6)j-10=0
We multiply parentheses
j^2-10=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $

See similar equations:

| 3x^2=-51x | | (p−3)=10p+5+3p | | 3.2(2r-9.6)=67.3 | | 6.4÷4+2x=3.2 | | 4y-2/5-7y=3/7 | | 5x+3x=47 | | 2x-11=40+x | | 0=6n^2-4n-1092 | | (2y+4)÷7=8 | | 180-90-3y=y | | 4x+10x+6x=20તોx= | | 28=28+v | | 4y-5=30-3y | | 3-d/2=5d/6 | | X3-12x+14=0 | | 7r-8=48 | | 7•x=56 | | (2/3x)-3=(1/2x)-7 | | n(n+1)=36 | | 4x+3(x+2)=20-(3×6) | | X+18x/100=1500 | | 9.8r=1.98+6.2r | | 9.8r=1.98+6.2 | | 4(3/2+1/2)=x | | 4x+2x-100=2(x-100) | | 7x+5=5x-35 | | X=2,5y | | x(3x+12)=60 | | 22+n=118 | | (2)(10)(0.4)+(2)(10)(x)=1/2(1960)(x)^2 | | 8+20x=980x^2 | | 18+n=74 |

Equations solver categories