(1/6)x+(2/3)x=5

Simple and best practice solution for (1/6)x+(2/3)x=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/6)x+(2/3)x=5 equation:



(1/6)x+(2/3)x=5
We move all terms to the left:
(1/6)x+(2/3)x-(5)=0
Domain of the equation: 6)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/6)x+(+2/3)x-5=0
We multiply parentheses
x^2+2x^2-5=0
We add all the numbers together, and all the variables
3x^2-5=0
a = 3; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·3·(-5)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*3}=\frac{0-2\sqrt{15}}{6} =-\frac{2\sqrt{15}}{6} =-\frac{\sqrt{15}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*3}=\frac{0+2\sqrt{15}}{6} =\frac{2\sqrt{15}}{6} =\frac{\sqrt{15}}{3} $

See similar equations:

| -4y-9(4y-7)=-9+3(6-y) | | v-3.48=9.8 | | 5x+4=4x+18 | | 48-7x=22 | | 1x+6=6x-39 | | 3x+10=3x-20=180 | | 1/2x-2(x+3)=1/3x+5 | | 16t+11=71 | | 3x²+11x+5=0 | | 86x-93=9 | | 5x-4=4x+18 | | 500+250x=30x | | (x/6)+(1/4)=x-(9/4) | | 5x–30=4x | | 2h-4=5h+5 | | Y=2x/(5-x) | | 23y-21(8y-6+9y)=23y+18(3y-3+72) | | 23y-21(8y-6+9y)=23y+18(3y-3+72) | | 4(a+3)=-4 | | 7n×2-3n+10=0 | | 5x—30=4x | | (m-4)-5m=6 | | 5(6x-7)=55 | | k^2=108 | | 80=32x+10 | | 7(n-3)=4(2n-10) | | 45-12.50x=T | | 18x+32(9x-6)=26x-8(7x-5+31x) | | 4.5x=18;3,4,5 | | 45+12.50x=T | | 80=4x+10 | | 500+w(25)=6500 |

Equations solver categories