(1/6)y+(2/12)=2

Simple and best practice solution for (1/6)y+(2/12)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/6)y+(2/12)=2 equation:



(1/6)y+(2/12)=2
We move all terms to the left:
(1/6)y+(2/12)-(2)=0
Domain of the equation: 6)y!=0
y!=0/1
y!=0
y∈R
determiningTheFunctionDomain (1/6)y-2+(2/12)=0
We add all the numbers together, and all the variables
(+1/6)y-2+(+2/12)=0
We multiply parentheses
y^2-2+(+2/12)=0
We get rid of parentheses
y^2-2+2/12=0
We multiply all the terms by the denominator
y^2*12+2-2*12=0
We add all the numbers together, and all the variables
y^2*12-22=0
Wy multiply elements
12y^2-22=0
a = 12; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·12·(-22)
Δ = 1056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1056}=\sqrt{16*66}=\sqrt{16}*\sqrt{66}=4\sqrt{66}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{66}}{2*12}=\frac{0-4\sqrt{66}}{24} =-\frac{4\sqrt{66}}{24} =-\frac{\sqrt{66}}{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{66}}{2*12}=\frac{0+4\sqrt{66}}{24} =\frac{4\sqrt{66}}{24} =\frac{\sqrt{66}}{6} $

See similar equations:

| 8(6b-3)=32-8b | | 3^x=89 | | 12x+3=11×+9 | | 5x2−30=95 | | 2x−10=10−3x | | 8x+6x2=0 | | 2x2−2x−1=0 | | 5+3(y-4)=4y+10 | | 45-y=25 | | (x+4)2−5=0 | | y=-4×÷36 | | 12y-14y=12 | | 2n^2+10n+13=7 | | 1/3^2+1=2x-2 | | -5^3-5b=5b^2-180 | | -16t^2+128t-112=t | | -16t2+128t-112=t | | w^2+2w-1250=0 | | F(-3)=4x+4 | | 17-2x=9x-5 | | y=150(0.53)^{5} | | -1/3|10-4x|=2 | | -16t2+128t-112=0 | | X(t)=2t^2-3t+5 | | 60-118-x=180 | | 60-118+x=180 | | 60+118+x=180 | | 2x/5=(5x+2)/6 | | 7x7=x7 | | -7.8(x+6.5=25.74 | | 3(x-8)=-3x-24 | | -7.8(x+6.5=35.74 |

Equations solver categories