(1/7)(x+4)=5

Simple and best practice solution for (1/7)(x+4)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/7)(x+4)=5 equation:



(1/7)(x+4)=5
We move all terms to the left:
(1/7)(x+4)-(5)=0
Domain of the equation: 7)(x+4)!=0
x∈R
We add all the numbers together, and all the variables
(+1/7)(x+4)-5=0
We multiply parentheses ..
(+x^2+1/7*4)-5=0
We multiply all the terms by the denominator
(+x^2+1-5*7*4)=0
We get rid of parentheses
x^2+1-5*7*4=0
We add all the numbers together, and all the variables
x^2-139=0
a = 1; b = 0; c = -139;
Δ = b2-4ac
Δ = 02-4·1·(-139)
Δ = 556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{556}=\sqrt{4*139}=\sqrt{4}*\sqrt{139}=2\sqrt{139}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{139}}{2*1}=\frac{0-2\sqrt{139}}{2} =-\frac{2\sqrt{139}}{2} =-\sqrt{139} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{139}}{2*1}=\frac{0+2\sqrt{139}}{2} =\frac{2\sqrt{139}}{2} =\sqrt{139} $

See similar equations:

| 2r+8/6=3r-1/8 | | 2x^2-250+500=0 | | x/4-3(x+2)=-28 | | 27=8+3(z-9) | | 1/7(x+4)=5 | | 3/4w=111/4  | | x+2(x-1)-3(x-2)=4(x-3) | | 6x÷2=50 | | X+x+2+x+4=27 | | 4a+6=5a-7 | | 1.4b+3.6=-11.2 | | 3/4w=111/4 | | 9n-2n+2n-8n=8 | | 33=-5(a-5)+8(1+6a) | | X+x+2+x+4+x+6=124 | | 4x^{2}+4x+4=0 | | 7.5w=112.5 | | 0.6(5x+15)=-12 | | 33=-5(a-5)+(1+6a) | | 20j-15j-2j+2=20 | | B=4x-11 | | 20.5=s/2.5 | | -178=-5x+5(-4x-13) | | 3x-4=x-32 | | X+x+2+x+4+x+6=336 | | 12p-11p=9 | | 8x+9=15x-18 | | 3(x-5)-14=2(x-7)+3A.25 | | 1.4-1.6(n+6)=4.6 | | -3(4p-5)=-(7+p) | | 3(4+3)=3-4(x-1) | | 15r+4r-18r=3 |

Equations solver categories