(1/7)n-1=4

Simple and best practice solution for (1/7)n-1=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/7)n-1=4 equation:



(1/7)n-1=4
We move all terms to the left:
(1/7)n-1-(4)=0
Domain of the equation: 7)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+1/7)n-1-4=0
We add all the numbers together, and all the variables
(+1/7)n-5=0
We multiply parentheses
n^2-5=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $

See similar equations:

| 154=14v | | 9f-4=7f-4 | | –10+2f=10−3f | | -65-9x=55-13x | | Y/2+1/5=2-y/3 | | p/9-5=-2 | | (8x-20)=7(x-1.5)=(4x+18) | | 9(v=1)=99 | | -5x-27=-7x+31 | | 5/12x+23x=37 | | 2(3x-9)-5x=7(2x-6) | | (8x-20)+7(x-1.5)+(4x+18)=180 | | 5x-1=14x=109 | | 9x-22=17x-92-7x | | -10x+4=50 | | (2x–93)=(x+28) | | -3=-8+r6 | | 9-4x=3x-5= | | −56=7(x−) | | -x-59=37-7x | | 10(20-3x)=80 | | b+2/3=11 | | 9x/5=36 | | 2x–93=x+28 | | y=88y= | | –9+9d=–2+10d | | 5x−7x+10x=−16 | | ]6x−6=6x−6 | | -0.5(16x+10)-4=25 | | 5+v/3=1 | | c+19/10=3 | | -x/14=-4 |

Equations solver categories