(1/7)x+1=21

Simple and best practice solution for (1/7)x+1=21 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/7)x+1=21 equation:



(1/7)x+1=21
We move all terms to the left:
(1/7)x+1-(21)=0
Domain of the equation: 7)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/7)x+1-21=0
We add all the numbers together, and all the variables
(+1/7)x-20=0
We multiply parentheses
x^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $

See similar equations:

| 6x^2-11x+10=0 | | 2x+3x=625 | | -6-9g=96 | | x^2+10x-1210=0 | | 2x+7+3x-5+4x-3=180 | | 12.3-0.25x=-0.50x+9 | | 4b-5=6b-25 | | 0=6x^2+1x-40 | | 10.89-0.04t+0.08((563-0.08t)/0.04))=0 | | g/3+18=9 | | x-7=01 | | C+9=13+3c | | 3y+12=69 | | 96=9g−-6 | | 20=14-2(5a*2) | | 4.06=3h | | 19+-6m=-17 | | 1=g/4−5 | | 9p+25=-38 | | 00.6b=24 | | x=6x^2+x-40 | | 15+-4r=35 | | 0.5(2x+8)=x-44 | | 6w+7=85 | | -14x+2x+3=4x-13-7x | | -44+3f=46 | | 2x+20=6x9 | | 16=-36+2s | | 2x+20=6x8 | | -8x^2-3x-2=-10x^2 | | 5/4=x=4/12 | | j/5-3=2 |

Equations solver categories