(1/8)d-4+(3/8)d-4=5

Simple and best practice solution for (1/8)d-4+(3/8)d-4=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/8)d-4+(3/8)d-4=5 equation:



(1/8)d-4+(3/8)d-4=5
We move all terms to the left:
(1/8)d-4+(3/8)d-4-(5)=0
Domain of the equation: 8)d!=0
d!=0/1
d!=0
d∈R
We add all the numbers together, and all the variables
(+1/8)d+(+3/8)d-4-4-5=0
We add all the numbers together, and all the variables
(+1/8)d+(+3/8)d-13=0
We multiply parentheses
d^2+3d^2-13=0
We add all the numbers together, and all the variables
4d^2-13=0
a = 4; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·4·(-13)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{13}}{2*4}=\frac{0-4\sqrt{13}}{8} =-\frac{4\sqrt{13}}{8} =-\frac{\sqrt{13}}{2} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{13}}{2*4}=\frac{0+4\sqrt{13}}{8} =\frac{4\sqrt{13}}{8} =\frac{\sqrt{13}}{2} $

See similar equations:

| 9(x)+3(x)=180 | | 3=17x+19 | | -399=7(7q-3)+3q | | 9x+7=x+-3 | | x+3(-8)=-16 | | x+2=2x+3=x+8 | | 9-5÷(8-3)x2+6=13 | | 4(-3y-16)+3y=8 | | -14+3n=n+3n | | -34=2(n-3) | | (3x+1)^2-3(3x+1)+2=0 | | 8.3+3.4y-0.5(12y-7)=0 | | -5(t+9)+15=30 | | 3x+4(4x+16)=-50 | | -9(8+b)=207 | | 5y-1=3y+9 | | X^2+2x+1=x^2+4x+4 | | 2c-5=c+7 | | 22-2(15-4x)=2 | | -5+35÷y=-12 | | -8x-(2x+7)=13 | | 49^x=10 | | +2x=20 | | 100=-16t^2+55t+325 | | 39=3.9t;=10 | | 3x+2/5=31 | | 35+3x=26 | | -9(z-5)=-45 | | 35+(5/2)y-(1/2)y=3 | | 5x2-6x+1=0 | | 5x-30-20x=0 | | 160x=345=45x |

Equations solver categories