(1/8)m=128

Simple and best practice solution for (1/8)m=128 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/8)m=128 equation:



(1/8)m=128
We move all terms to the left:
(1/8)m-(128)=0
Domain of the equation: 8)m!=0
m!=0/1
m!=0
m∈R
We add all the numbers together, and all the variables
(+1/8)m-128=0
We multiply parentheses
m^2-128=0
a = 1; b = 0; c = -128;
Δ = b2-4ac
Δ = 02-4·1·(-128)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*1}=\frac{0-16\sqrt{2}}{2} =-\frac{16\sqrt{2}}{2} =-8\sqrt{2} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*1}=\frac{0+16\sqrt{2}}{2} =\frac{16\sqrt{2}}{2} =8\sqrt{2} $

See similar equations:

| 1x+17=33 | | 15=3x-4=14 | | 76=u/4 | | 4u+38=7(u+2) | | 9(2x=3)=12x-9 | | Y=1.8x+80 | | 3f=-5f+8f | | 7/12−y=−2/3y= | | 7/12−y=−2/3 | | 6(4x+1=78 | | x2–28x+160=144 | | P(2)=p(12) | | -9b=5-8b | | 2x+90=5x+12 | | 2r-7r=-6r-6 | | 4.8-y=13 | | 7x+8=18x5x | | b-0.13b=0.87b | | 5x+30=2x+24 | | 110=23x-5 | | 4x+3÷5=2x-1÷2 | | -8=-4(x-1) | | -6(9x+5)-3x-4x=-408+8 | | 77x+4=78x | | 3b2-8b+4=0 | | x-14.6=8.06 | | 9p-13=11 | | –3a=15 | | 2/3(13+n)=-1/2n | | 2x+((x-3)^2)/2-6+2/3*(4x-5)=(1-x)*(x+2)/3-1/6+2(x-1) | | 6m+3=(2m-4)÷2 | | Y=x/3+4 |

Equations solver categories