(1/8)n+1=32

Simple and best practice solution for (1/8)n+1=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/8)n+1=32 equation:



(1/8)n+1=32
We move all terms to the left:
(1/8)n+1-(32)=0
Domain of the equation: 8)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+1/8)n+1-32=0
We add all the numbers together, and all the variables
(+1/8)n-31=0
We multiply parentheses
n^2-31=0
a = 1; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·1·(-31)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{31}}{2*1}=\frac{0-2\sqrt{31}}{2} =-\frac{2\sqrt{31}}{2} =-\sqrt{31} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{31}}{2*1}=\frac{0+2\sqrt{31}}{2} =\frac{2\sqrt{31}}{2} =\sqrt{31} $

See similar equations:

| 43n=8n+1 | | 3x+3=3x-1=3x+8 | | 43 | | -4*6x=40 | | 18=-6x+8x+14-2 | | 2n+1=64 | | 2n+1=64` | | (7+x)+11=88 | | 5(n-8)+2n=7n-40 | | x-15/12=-35/12 | | 3y-8+y=32 | | 9−x=47 | | 9−x=−47 | | -2/3x+19=-4 | | 2x-23=7x+8 | | 8=-6x+8x+14-2 | | 4(x-8=28-8x | | 7(x+4)=8�x+31 | | 3x-2(x-6)=2(4-x) | | 45870*50+5n=355 | | 15-7n=-7n=7 | | 2y/y=10 | | 12=4+-2h | | 21a^2-47a=-20 | | 2. x=2x-3 | | 1.8x-4.4=4.9 | | 1.67g-8=0.68 | | 2.3x-3.4=0.6 | | 4(b-67)=64 | | 3(2d+8)=11d-18(d-3) | | x-3/2-7=2 | | -x²=-81 |

Equations solver categories