(1/8)t+7=13

Simple and best practice solution for (1/8)t+7=13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/8)t+7=13 equation:



(1/8)t+7=13
We move all terms to the left:
(1/8)t+7-(13)=0
Domain of the equation: 8)t!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
(+1/8)t+7-13=0
We add all the numbers together, and all the variables
(+1/8)t-6=0
We multiply parentheses
t^2-6=0
a = 1; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·1·(-6)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*1}=\frac{0-2\sqrt{6}}{2} =-\frac{2\sqrt{6}}{2} =-\sqrt{6} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*1}=\frac{0+2\sqrt{6}}{2} =\frac{2\sqrt{6}}{2} =\sqrt{6} $

See similar equations:

| 15n=14n-10 | | (t/4)+32=28 | | 251.2=2(3.14)r(10) | | 3+4x=28x+27 | | 70=x+50 | | 2^x=4x | | 5(m-5)=80 | | 6x-5(2x+5)=23 | | (t/3)+14=25 | | x-5=-x+10 | | 2(50-b)+2b=100 | | 2−1/3/1+1/4=x/1+2/5 | | 5/x+1/3x=4x/3 | | 6v-4/8=7/8 | | 2x+2(-5+15)=10 | | 2−1/31+1/4=x1+2/5 | | -6x+3(-6x+21)=183 | | 4m+5m=19 | | (t/5)+7=12 | | 2(m-6)=25 | | 7x+4(-3x+12)=13 | | 3a-7=24 | | (y+2)(5y-1)=y | | 2(m-2)=21 | | 8=23(3x+6) | | 2y+30+90=180 | | -3(2x-1)-3^2=-3(3x) | | -4(5b-6)=8-4b | | 12y-25=-109 | | 3m-2=m+3 | | 9x2+32=3x2+86 | | 2m=m+10 |

Equations solver categories