If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/8)x=32
We move all terms to the left:
(1/8)x-(32)=0
Domain of the equation: 8)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+1/8)x-32=0
We multiply parentheses
x^2-32=0
a = 1; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·1·(-32)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*1}=\frac{0-8\sqrt{2}}{2} =-\frac{8\sqrt{2}}{2} =-4\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*1}=\frac{0+8\sqrt{2}}{2} =\frac{8\sqrt{2}}{2} =4\sqrt{2} $
| s*5+33=153 | | 180-x+12=3x+48 | | y=-7*36+8 | | 25.2=2(x+6/7x)+4.4 | | y=7*36+8 | | 12k=16+11k | | 7x+2=5x+52 | | 2g=-10-8g | | 1=-7x=8 | | d-9=-3d-1 | | 9m-28=62m= | | -9x+41=-5(x-9) | | 0=-0.04x^2+2x+20 | | -7n+4=-6n | | 7n+3-4n=-3 | | 5p-9=10p+6 | | 3n=2n+4 | | 5n+6-3n=-10 | | 5n-8=9 | | 6y=54. | | 5x+40=5x-20 | | 2x+1.0=2x | | ½x–3=2 | | 18x–5=13 | | j+8=-13 | | 5(8)-2y=305(8)−2y=30 | | 15–3x=3 | | 3^x=7x-5 | | 9-9f=-10f | | 501=579-3x | | 5x+2+5x+1=2x+3+2x+2 | | -10h=8-9h |