(1/9)3x+4=81

Simple and best practice solution for (1/9)3x+4=81 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/9)3x+4=81 equation:



(1/9)3x+4=81
We move all terms to the left:
(1/9)3x+4-(81)=0
Domain of the equation: 9)3x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/9)3x+4-81=0
We add all the numbers together, and all the variables
(+1/9)3x-77=0
We multiply parentheses
3x^2-77=0
a = 3; b = 0; c = -77;
Δ = b2-4ac
Δ = 02-4·3·(-77)
Δ = 924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{924}=\sqrt{4*231}=\sqrt{4}*\sqrt{231}=2\sqrt{231}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{231}}{2*3}=\frac{0-2\sqrt{231}}{6} =-\frac{2\sqrt{231}}{6} =-\frac{\sqrt{231}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{231}}{2*3}=\frac{0+2\sqrt{231}}{6} =\frac{2\sqrt{231}}{6} =\frac{\sqrt{231}}{3} $

See similar equations:

| 20^x+5^x=20 | | 3(4y+-5)=-3 | | 2.5/x^2=6 | | 8+y=9y | | x/350=41-28/41 | | 11=4+3x | | 180-90x^2/24=0 | | 2(3x+6)=6(2x-7) | | 4(10-2g)=3g+7 | | 5(6x+3)+20=5 | | -2=2(15-4a) | | -2a=2(15-4a) | | 2(2x+3)-2x=48 | | 2(10-3b)=8 | | 2(4x+3)+X=78 | | 4(3a-2)=40 | | 60=3(x-3 | | F(-4)=x+3 | | 9-3(5-1)+4=x | | (-2)=3p^2-20p+90 | | y=5-2/5 | | -5x+7x-14=14=2(x-2)-29 | | -0.9n-3=-1.7n-5.4 | | 5n+25=90 | | a/7=31 | | -5=x-108 | | X=y-105 | | 0.03(x)=88 | | 3x+120=8x | | 3(z-1)(-z+7)=0 | | 3x-5+15=90 | | x2-149x+3500=0 |

Equations solver categories