(10+x)(12+x)=240

Simple and best practice solution for (10+x)(12+x)=240 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10+x)(12+x)=240 equation:



(10+x)(12+x)=240
We move all terms to the left:
(10+x)(12+x)-(240)=0
We add all the numbers together, and all the variables
(x+10)(x+12)-240=0
We multiply parentheses ..
(+x^2+12x+10x+120)-240=0
We get rid of parentheses
x^2+12x+10x+120-240=0
We add all the numbers together, and all the variables
x^2+22x-120=0
a = 1; b = 22; c = -120;
Δ = b2-4ac
Δ = 222-4·1·(-120)
Δ = 964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{964}=\sqrt{4*241}=\sqrt{4}*\sqrt{241}=2\sqrt{241}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{241}}{2*1}=\frac{-22-2\sqrt{241}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{241}}{2*1}=\frac{-22+2\sqrt{241}}{2} $

See similar equations:

| 4x=5=1 | | 3x/4x-1=14/18 | | 4x-13=-33 | | F(x)=3x^2+7x+7F(-2) | | F(x)=3x^2+7x+7 | | x^2+2√3x-34=0 | | F(-2)=3x^2+7x+7 | | 2(p=1)=16 | | -8x+16=3x+5 | | -8x+16=3x÷5 | | -7+8a-8a=1+3a+7 | | x^2=441^-1 | | 21a=30 | | 1+k=-1-k | | 25-5x=9x | | x^2-2x+3x-6=2x-4 | | 3^x^-2=10 | | 14x-13=4+8x= | | -8x^2+8x=6 | | 5(10n-1)=395 | | 141=3(5x-3) | | (2x-1)(4x+6)=0 | | 141=3(5x-3 | | 12-12y+y^2=0 | | 4-8y+y^2=0 | | 2x=−46 | | 120=6(5+3n) | | 12⋅(x+10)=10 | | 3x−2=28 | | 5x−18=17 | | |x+2|=-4 | | 4=x*2 |

Equations solver categories