If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(10/3)x+5/4=29/4
We move all terms to the left:
(10/3)x+5/4-(29/4)=0
Domain of the equation: 3)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+10/3)x+5/4-(+29/4)=0
We multiply parentheses
10x^2+5/4-(+29/4)=0
We get rid of parentheses
10x^2+5/4-29/4=0
We multiply all the terms by the denominator
10x^2*4+5-29=0
We add all the numbers together, and all the variables
10x^2*4-24=0
Wy multiply elements
40x^2-24=0
a = 40; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·40·(-24)
Δ = 3840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3840}=\sqrt{256*15}=\sqrt{256}*\sqrt{15}=16\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{15}}{2*40}=\frac{0-16\sqrt{15}}{80} =-\frac{16\sqrt{15}}{80} =-\frac{\sqrt{15}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{15}}{2*40}=\frac{0+16\sqrt{15}}{80} =\frac{16\sqrt{15}}{80} =\frac{\sqrt{15}}{5} $
| X+x+10=74 | | x+2(-1)+3(-1/2)=1 | | 2y+1=3y+3 | | 2x3+30x=17x2 | | 2(x+1)-(x-1)=-(x+1) | | 4(2-x)+1=2x+2-5 | | 4*(x+2)-5/2+x=7/2+x; | | 2*(x+1)=-x+4 | | 3(x-8)=7(x+10 | | X(5-5y)=7-2y | | 3x-10=-2+15 | | 2*x^2-57*x+400=0 | | 3x10=-2+15 | | -2x=2+7 | | 5(x+1)=2x-3-4(x+5) | | x+0,05x=50 | | 2x=-11+1 | | 3w+4=19+5w | | -3(1+2t)=7(t-5) | | 6(x-5)=5x=8 | | 5=4+d3 | | 19+9a=100 | | 5p+2p=84 | | 7+9r=79 | | 16t-12=308 | | Y=140.08-19.51x+1.01x^2 | | 3x(x+1)=-30 | | (2x+1)(10x-5)=0 | | 3x-2+3x-2+x/6+x/6=34 | | 6,25-x^2=0 | | 6x-4+2x/6=34 | | (2x+10)/(6x+1)=9 |