If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(100+2x)(150+x)=18000(100+2x)(150+x)=18000
We move all terms to the left:
(100+2x)(150+x)-(18000(100+2x)(150+x))=0
We add all the numbers together, and all the variables
(2x+100)(x+150)-(18000(2x+100)(x+150))=0
We multiply parentheses ..
(+2x^2+300x+100x+15000)-(18000(+2x^2+300x+100x+15000))=0
We calculate terms in parentheses: -(18000(+2x^2+300x+100x+15000)), so:We get rid of parentheses
18000(+2x^2+300x+100x+15000)
We multiply parentheses
36000x^2+5400000x+1800000x+270000000
We add all the numbers together, and all the variables
36000x^2+7200000x+270000000
Back to the equation:
-(36000x^2+7200000x+270000000)
2x^2-36000x^2+300x+100x-7200000x+15000-270000000=0
We add all the numbers together, and all the variables
-35998x^2-7199600x-269985000=0
a = -35998; b = -7199600; c = -269985000;
Δ = b2-4ac
Δ = -71996002-4·(-35998)·(-269985000)
Δ = 12958560040000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12958560040000}=3599800$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7199600)-3599800}{2*-35998}=\frac{3599800}{-71996} =-50 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7199600)+3599800}{2*-35998}=\frac{10799400}{-71996} =-150 $
| 64=6y+9 | | 8=3-5v | | 9(y+1)=7y+25 | | 9(y+1)=7+25 | | 4+8x+23=7 | | 4x-2/8=6x+1 | | 5x-6-2x=2(2x-3) | | c–2=–9 | | b–6=–7 | | -7n+8=71 | | 4=–2v | | 81=15+6t | | –x2–13=–18 | | 1/2=1/2z5/7 | | 14=7(1+t) | | 3x+12x4=84 | | 150+3.t=1.050 | | –6=–2(v+6) | | 10k2+3k-4=0 | | 11+u=2 | | 3=b2 | | 11=11+a2 | | 2x*x=30 | | (3x+19)(7x+5)+(2x+8)=180 | | –10s+2s=–40 | | −1.5| | | 19=w+20 | | H=39.2t-4.9t² | | 1/10+1/r=1/5 | | 3w–13=14 | | 1/5=1/10+1/r | | -4.9x^2-2x+100=0 |