If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(10x+12)(5x)=180
We move all terms to the left:
(10x+12)(5x)-(180)=0
We multiply parentheses
50x^2+60x-180=0
a = 50; b = 60; c = -180;
Δ = b2-4ac
Δ = 602-4·50·(-180)
Δ = 39600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39600}=\sqrt{3600*11}=\sqrt{3600}*\sqrt{11}=60\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60\sqrt{11}}{2*50}=\frac{-60-60\sqrt{11}}{100} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60\sqrt{11}}{2*50}=\frac{-60+60\sqrt{11}}{100} $
| 6(b-3)=4b-4 | | 1/7y+4=-18 | | 60^3-120x=0 | | 3(n+2)+n=8n-8+6 | | -5+7+2k-3k=-8 | | 6v−5v=5 | | 2^y=5^y-2 | | 4(4x+2)-5=115 | | x/2=25-6 | | X-7=2/5x+20 | | -65+15=-2x+12x | | x÷2+4=8 | | 3y²-17y+6=0 | | 3/2t=1/3 | | 1.8x=1.6x+12.48 | | 4(x-2)+x=10 | | 8w-25w-40=13+5w | | (x-10)+(x+10)+100=180 | | 7/5x=15 | | z/6.2=16 | | 50+5x=15x | | A/16+10p=99 | | 8t=-7 | | 4(-3+1)-4x+1=-26 | | 5x+50=92 | | 0.002n*15=2 | | 5(-2x+5)+5-x=-43 | | 19.2y=9.6 | | 4a-3a+3a=16 | | -1.8=-5/2(x-6.8)+27/6x | | 11x+-3=15x+-19 | | 1÷4(5b+11)=19 |