If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(10x-10)(5x+10)=180
We move all terms to the left:
(10x-10)(5x+10)-(180)=0
We multiply parentheses ..
(+50x^2+100x-50x-100)-180=0
We get rid of parentheses
50x^2+100x-50x-100-180=0
We add all the numbers together, and all the variables
50x^2+50x-280=0
a = 50; b = 50; c = -280;
Δ = b2-4ac
Δ = 502-4·50·(-280)
Δ = 58500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{58500}=\sqrt{900*65}=\sqrt{900}*\sqrt{65}=30\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-30\sqrt{65}}{2*50}=\frac{-50-30\sqrt{65}}{100} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+30\sqrt{65}}{2*50}=\frac{-50+30\sqrt{65}}{100} $
| (5x+5)(3x+15)=180 | | 2x+25=2x+24=13 | | 2.x=-16 | | 4x+12=2x+12+2x | | -28+x=19 | | -0.6x*80^2+18*80-130=0 | | B=15.25-0.06x | | 3b/2=13 | | 4^x=256^x-1 | | -0.6x^2+18x-130=0 | | -0.6x+x+18x-130=0 | | 7-3x=8x2 | | -1.2x+18=0 | | (3x+6)(4x-29)=180 | | (x-12)^2=100 | | v+18/2=0 | | x+(2x/25)=12305.64 | | X+(15+x)=255 | | X+(15+x)=250 | | -10y+9y=-9 | | 3^x+2=9^2x | | 7k=17+30 | | 42+2x=100 | | 2.5*x+x=78 | | 95=(1.08+18x)/(0.06-x) | | 2x-2/3-9x-2/5=2 | | 8=5x/3-7 | | (3x-1)^=25 | | 6-9x=23 | | 3x-9-2x+5=6x-4x+7 | | 0.2x=128 | | 76-6x=64 |