(10x-9)(3x+2)=(5x-3)

Simple and best practice solution for (10x-9)(3x+2)=(5x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10x-9)(3x+2)=(5x-3) equation:



(10x-9)(3x+2)=(5x-3)
We move all terms to the left:
(10x-9)(3x+2)-((5x-3))=0
We multiply parentheses ..
(+30x^2+20x-27x-18)-((5x-3))=0
We calculate terms in parentheses: -((5x-3)), so:
(5x-3)
We get rid of parentheses
5x-3
Back to the equation:
-(5x-3)
We get rid of parentheses
30x^2+20x-27x-5x-18+3=0
We add all the numbers together, and all the variables
30x^2-12x-15=0
a = 30; b = -12; c = -15;
Δ = b2-4ac
Δ = -122-4·30·(-15)
Δ = 1944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1944}=\sqrt{324*6}=\sqrt{324}*\sqrt{6}=18\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-18\sqrt{6}}{2*30}=\frac{12-18\sqrt{6}}{60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+18\sqrt{6}}{2*30}=\frac{12+18\sqrt{6}}{60} $

See similar equations:

| 10x-9+3x+2=5x-3 | | 4^x=600 | | X*x*x=0.3 | | 1/2(d-3)-8/3(4d-4)=5/12 | | x=12+4x(-2) | | Y=(3/2)x+15 | | 1,101,206,971=5000000/x | | 1,101,206,971=5000000x | | 20+5x=245 | | 10x=50000000 | | 3x2=x+14 | | h(3)=h(–10)=0 | | 5(9-2c)=15 | | y–17=8 | | X^2=20000000y | | 95-5=n | | 3.3(x-2)=x-6 | | 13-4b-2b=-5b+6 | | 2.2(x-3)=2x-6 | | 1.6(x-2)=6x-3 | | a+127=177 | | -8x=2(7-4x) | | 4^5x-8=125 | | 12x^2-144x+384=0. | | x-5/9=2/15 | | 7+n-4=22n=20 | | 9x-24=5x+16 | | 3z+z=2 | | 40+10x=80+6x | | 3z+z=4z | | x-3(2x-7)=56 | | 3z+z=2z |

Equations solver categories