If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(10x^2)+30=120
We move all terms to the left:
(10x^2)+30-(120)=0
We add all the numbers together, and all the variables
10x^2-90=0
a = 10; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·10·(-90)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*10}=\frac{-60}{20} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*10}=\frac{60}{20} =3 $
| 4n-1=3n+12 | | 0.16666667(12z-18)=2z-3 | | 1.5-0.5n=n+3.25 | | (2x2)-5=93 | | 15-m=-38 | | 2x-(x+1)=3x+11 | | x2x+3=9 | | 5y+34=2(7y+1 | | 300x=120000 | | -112+5x=112-11x | | 18+m=92 | | (3x2)+12=60 | | 5+x/3=-4 | | (x+5)(x-1)=x/2+160 | | 86+2x+10=11x-3 | | 5x+45=2x+117 | | 5(y-2)+5=35 | | 〖7x〗^2-1=20 | | m/–8+45=47 | | n/17=-17 | | x-40=4(2x+3)-3 | | 1/2x+2/3=3/4+1/6x | | 5+(2x-4)=11 | | x5x-5=9x+3 | | X+2x+7x+1=31 | | 5+(2x-4)=1+ | | y+5/8=4/3 | | 8d+3d+6d-3-2d=0 | | 1/2x-3=1/2x+7 | | 7x+11=4x–4 | | n+10=101/3 | | -4=k/12 |