(11/10)x=11/12

Simple and best practice solution for (11/10)x=11/12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (11/10)x=11/12 equation:



(11/10)x=11/12
We move all terms to the left:
(11/10)x-(11/12)=0
Domain of the equation: 10)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+11/10)x-(+11/12)=0
We multiply parentheses
11x^2-(+11/12)=0
We get rid of parentheses
11x^2-11/12=0
We multiply all the terms by the denominator
11x^2*12-11=0
Wy multiply elements
132x^2-11=0
a = 132; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·132·(-11)
Δ = 5808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5808}=\sqrt{1936*3}=\sqrt{1936}*\sqrt{3}=44\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-44\sqrt{3}}{2*132}=\frac{0-44\sqrt{3}}{264} =-\frac{44\sqrt{3}}{264} =-\frac{\sqrt{3}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+44\sqrt{3}}{2*132}=\frac{0+44\sqrt{3}}{264} =\frac{44\sqrt{3}}{264} =\frac{\sqrt{3}}{6} $

See similar equations:

| 2(3x-7)+5x=-58 | | 5m+90+2m+30=90 | | –2c=–3c−9 | | 6x-32=8(x+4) | | 8-(3n+8)=32 | | 800+460m=2450 | | -3(-4v+8)-v=3(v-9)-9 | | 10•p=90 | | 5+7u=9(3-2u) | | w–(–2)=6 | | -2+1/3x=1/3x-2 | | 128=8×d | | 4x+33=5x+30 | | 2x-15x=27-4x | | 5(7x-2)=34 | | 3^x+1+3^×+3=10 | | -3(-1+6b)-5=146 | | 6x=6+3 | | -5+12x=8x+7 | | −5(3x−17)=2(x−3)−11 | | 2(w+8)=-4(4w-5)+8w | | -2(4m-5)-(6m+11)=33 | | s54= 0 | | 800=(x+20)*x | | -0.5h=-0.72-1.4h | | 1225+5x=1975 | | 15+3x=2(−x+4)−23 | | 7y-9-6=-32 | | 4(x-8)=112/14 | | 5+3x=7x–3 | | 6−9x=6x−9x−24 | | 2.5+1.5x=40.5-0.5x |

Equations solver categories