(11/5)z=2/5

Simple and best practice solution for (11/5)z=2/5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (11/5)z=2/5 equation:



(11/5)z=2/5
We move all terms to the left:
(11/5)z-(2/5)=0
Domain of the equation: 5)z!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
(+11/5)z-(+2/5)=0
We multiply parentheses
11z^2-(+2/5)=0
We get rid of parentheses
11z^2-2/5=0
We multiply all the terms by the denominator
11z^2*5-2=0
Wy multiply elements
55z^2-2=0
a = 55; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·55·(-2)
Δ = 440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{440}=\sqrt{4*110}=\sqrt{4}*\sqrt{110}=2\sqrt{110}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{110}}{2*55}=\frac{0-2\sqrt{110}}{110} =-\frac{2\sqrt{110}}{110} =-\frac{\sqrt{110}}{55} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{110}}{2*55}=\frac{0+2\sqrt{110}}{110} =\frac{2\sqrt{110}}{110} =\frac{\sqrt{110}}{55} $

See similar equations:

| -22=1+13x+10x | | 2x=-3x+55 | | ​4x+3=−12x-13 | | 2y-4-y=4 | | 4(k+4)+11=3(k+10)+k-3 | | x(5-7)+3(x-2)=3(-2x+1) | | 11x+27=5 | | 5w-7=8w+2 | | 2x-12+11=8+x | | 2(n−3)=4n+1​ | | 3x+17=-76 | | -3(x-2)+14=x+4 | | 7x-20+5=0 | | |f-6|=|f-4| | | 4.8y-3.1=-6.7 | | 4(7-x)=-4x+37 | | 12=4x+12x | | 12+x+6=3x+8 | | 63+10a=7(a+12)-6 | | -3x2=18 | | 5(5-y)-37=25y-6(2+5y) | | 48+12x=6(8+2x) | | −3(−x+2)−4x+3=  33 | | 0.1x0.1= | | 10x+3x-22=147 | | -10(-r+8)=-58+12r | | -8(y-9)=-4y+36 | | 1=p+194 | | 9(3x+5)-12(2x+5)=3x-8-12 | | 8.2(f+4)=6.7f+5.2 | | 8y-34=-2(y-3) | | 2(x+1)+2(x+4)=90 |

Equations solver categories